Remedial Mathematics I Best B pharmacy Semester 1 free notes | Pharmacy notes pdf semester wise

REY
0

 Handwritten Notes

Remedial Mathematics I Best B pharmacy Sem 1 free notes | download pharmacy notes pdf semester wise

Semester I
BP 106RMT.REMEDIAL MATHEMATICS  (Theory)
UNIT -I
•     Partial  fraction
Introduction,  Polynomial,  Rational  fractions,  Proper  and  Improper  fractions, Partial  
fraction,  Resolving  into  Partial  fraction,  Application of  Partial Fraction in Chemical 
Kinetics and  Pharmacokinetics

•     Logarithms
Introduction, Definition, Theorems/Properties  of  logarithms, Common logarithms,  
Characteristic  and  Mantissa, worked examples, application  of logarithm to solve 
pharmaceutical problems.
•    Function.-
Real-Valued function, Classification of real-valued functions,

•    Limits and continuity  :
Introduction, Limit  of  a function, Definition  of the limit of  a function
UNIT -II
•     Matrices and Determinant:
Introduction   matrices, Types  of  matrices, Operation on matrices, Transpose of 
a  matrix, Matrix  Multiplication, Determinants,  Properties  of determinants, Product  of  
determinants, Minors  and  co-Factors, Adjoint or adjugate  of  a square  matrix,     
Singular and  non-singular matrices, Inverse of a matrix,  solution of a system of linear of 
equations using matrix method, Cramer's  rule, Characteristic  equation, and  roots  
of  a  square matrix, Cayley—Hamilton  theorem, Application of  Matrices  in  solving 
Pharmacokinetic  equations

UNIT -III
•     Calculus
Differentiation:  Introductions,  Derivative  of  a  function,  Derivative  of  a constant,      
Derivative of  a product  of  a constant  and  a function,  Derivative of  the sum  or difference 
 of  two functions, Derivative  of  the product  of  two functions  (product  formula),       
Derivative of  the quotient  of  two  functions (Quotient formula) Without Proof,    
Derivative of n  w. r.tx, where n is any rational  number,  Derivative  of  ex,,  Derivative  
of the loge X, Derivative of ax Derivative  of  trigonometric functions from first   
principles (without Proof), Successive Differentiation, Conditions for a function   
to be a maximum or a minimum at a point. Application

UNIT-IV
•     Analytical Geometry
Introduction:  Signs of  the Coordinates, Distance formula,
Straight Line:   Slope or gradient  of  a  straight   line, Conditions  for 
parallelism  and  perpendicularity  of  two  lines, Slope  of  a line  joining  two
points, Slope - intercept form of a straight line
Integration:
Introduction,  Definition,  Standard  formulae,  Rules of integration, Method  of substitution,   
    Method  of  Partial  fractions, Integration by parts, definite integrals, application

UNIT-V
•     Differential  Equations:   Some  basic  definitions,  Order  and  degree, Equations   in   
separable   form,   Homogeneous    equations, Linear Differential equations, Exact  
equations,  Application  in  solving Pharmacokinetic equations
•     Laplace  Transform: Introduction,  Definition, Properties of Laplace transform,   
Laplace   Transforms of elementary functions, Inverse Laplace transforms, Laplace  
transform  of  derivatives,  Application  to solve Linear differential equations,  Application in 
solving Chemical kinetics and Pharmacokinetics equations
Remedial Mathematics I Best B pharmacy Semester 1 free notes | Pharmacy notes pdf semester wise
Remedial Mathematics I Best B pharmacy Semester 1 free notes | Pharmacy notes pdf semester wise

Recommended  Books: (Latest Editions)

1.   Differential Calculus by Shanthinarayan
2.   Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
3.   Integral Calculus by Shanthinarayan
4.   Higher Engineering Mathematics by Dr.B.S. Grewal

Post a Comment

0 Comments


Please do not enter any spam link in the comment box.

Post a Comment (0)
To Top